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Abstract— Optimal control is a powerful approach to achieve
optimal behavior. However, it typically requires a manual
specification of a cost function which often contains several
objectives, such as reaching goal positions at different time
steps or energy efficiency. Manually trading-off these objectives
is often difficult and requires a high engineering effort. In this
paper, we present a new approach to specify optimal behavior.
We directly specify the desired behavior by a distribution
over future states or features of the states. For example, the
experimenter could choose to reach certain mean positions
with given accuracy/variance at specified time steps. Our
approach also unifies optimal control and inverse optimal
control in one framework. Given a desired state distribution,
we estimate a cost function such that the optimal controller
matches the desired distribution. If the desired distribution is
estimated from expert demonstrations, our approach performs
inverse optimal control. We evaluate our approach on several
optimal and inverse optimal control tasks on non-linear systems
using incremental linearizations similar to differential dynamic
programming approaches.

I. INTRODUCTION

Optimal control [1], [2] aims at finding optimal behavior
given a cost function and the dynamics of the system.
Typically, the cost function consists of several objectives that
need to be traded off by the experimenter. Finding the correct
trade-off often requires fine-tuning until the optimal behavior
matches the desired behavior of the experimenter. Con-
versely, Inverse Reinforcement Learning (IRL) algorithms
[3] aim at finding a reward function for a Markov Decision
Problem (MDP) that is consistent with observed expert
demonstrations. It can be used for inferring the expert’s goals
as well as for apprenticeship learning. By learning a reward
function from demonstrations rather than learning a policy
directly, a succinct and feature based task representation
is learned, that generalizes to different situations and is
unaffected by changes in the dynamics.

In this paper, we approach the problem of optimal control
and inverse optimal control in the same framework by
matching the induced state distribution of the policy with the
desired state distribution or—for inverse optimal control—
the observed state distribution of the experimenter. We will
focus on the stochastic trajectory optimization case where the
desired distributions are given by Gaussian distributions over
trajectories. Instead of defining a quadratic cost function as
it is the case for optimal control, we specify a desired mean
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state and a desired accuracy for reaching the mean state.
In addition, we can specify the importance of matching the
desired distribution for each time step, i.e., we can specify
desired mean state and accuracy only for a subset of the
time steps. For optimal control, the desired mean state and
accuracy is chosen by the experimenter for a subset of
the time steps, while in the inverse RL case, the desired
distribution is typically estimated from the experimenter. Our
approach implicitly estimates a time-dependent quadratic
reward function such that the optimal control policy that is
obtained from maximizing this reward function matches the
desired trajectory distribution.

In our approach, the trajectory distribution can be given
either in joint or in operational space. Our objective is now
to estimate a controller that matches the desired trajectory
distribution. In order to realize this objective, we minimize
the relative entropy or Kullback-Leibler (KL) divergence
between the distribution induced by the policy and the
desired distribution. This KL minimization procedure has a
strong resemblance to existing inverse reinforcement learning
algorithms such as maximum causal entropy IRL [4] if we
match the first and second order moments as features of the
trajectory for each time step, i.e., when matching mean and
variance. Matching the variance in addition to the mean is
often sensible when inferring the expert’s goal, given that it is
an important indicator for the importance of accurate control.
However, using existing IRL algorithms is computationally
very expensive as the number of parameters grow linearly
with the number of time steps and even quadratically with
the dimensionality of the system. Using our KL minimization
objective, we develop a new update rule for obtaining the
parameters of the reward function and show that this update
rule can be several orders of magnitudes more efficient
than the standard gradient descent update rule. Moreover,
many IRL algorithms [5], [6] need to observe the actions
in the demonstrations. This assumption is often unrealistic,
for example when we get the demonstrations by observing
a human expert.

Similar to most trajectory optimization algorithms, we
formulate our algorithm with linear system dynamics to make
the estimation of the policy feasible in closed form. For
non-linear systems, we introduce an incremental procedure
based on linearizations similar to the well known incremental
LQG algorithm [7]. In order to ensure stability of the policy
update, we follow the trajectory optimization approach from
[8] used for Guided Policy search. In addition to minimizing
the KL to the desired distribution over task space positions,
we also limit the KL to the old policy, which has been used
for obtaining the linearization of the system. This KL-bound



ensures stability of the iterative optimization.

We evaluate our method on optimal control and inverse
optimal control problems and compare our algorithm to
competing IRL approaches. We show that our novel update
direction outperforms the standard update direction from
MaxEnt-IRL. Moreover, we compare our approach to the
IRL approach given in [9] on a handwritten letter trajectory
data set and to [10] on a pendulum swing-up. Finally, we
show the applicability of our approach on a non-linear four-
link pendulum that needs to achieve a peg-in-the-hole task
with a given accuracy.

A. Related Work

The first IRL approaches [3] formulated the problem of
obtaining the reward function as linear optimization problem,
where the reward, that is assumed to be linear in some
features, should be maximal for the demonstrated trajec-
tories. As pointed out by [3], the inverse RL problem is
ill-defined and many reward functions exists that satisfy
this criterion. Ziebart et al. [13] introduced a max-entropy
formulation for inverse reinforcement learning that resolves
the ill-posedness based on the principle of maximum entropy
for estimating distributions[ 14]. We will discuss the MaxEnt-
IRL algorithm in more details in the preliminaries. While the
standard MaxEnt algorithms all require a model of the system
dynamics to perform dynamic programming, [15] proposed a
model-free variant that uses reinforcement learning to obtain
the optimal policies that are induced by a given reward
function.

Another IRL algorithm that is based on maximum entropy
IRL and on local trajectory optimization has been introduced
in [5]. The algorithm computes a reward function that renders
the demonstration locally optimal by using second order
Taylor approximations of the learned reward function and
linearizations of the system dynamics. Yet, this algorithm
does not take stochastic system dynamics into account and
can not be directly used to estimate a time-dependent reward
function for the trajectories. Furthermore, the method has to
observe the actions in the demonstrations, which is not the
case for our approach. Another IRL approach that tries to
estimate a similar, time-dependent reward function for the
trajectories is presented in [9]. The authors use stochastic
optimization to obtain the parameters of the reward func-
tion by optimizing the max-entropy IRL objective. Sub-
sequently, an LQR solution is used to obtain the optimal
controller. However, as the maximum entropy objective does
not consider the stochasticity of the system, the resulting
controller does not match the desired features. Consequently,
the estimated reward function also does not fully explain the
expert’s behavior. We will compare our approach to [9] in
the experiment section.

There are many stochastic trajectory optimization tech-
niques that rely on linearizations, including the incremental
LQG algorithm [7], AICO [16], Robust Policy Updates [17]
and the algorithm used for guided policy search [8]. To our
experience, the approach presented in [8] is the most stable

one as it uses a KL bound to the old policy to stabilize the
policy update.

Englert et. al. presented a model-based approach to imita-
tion learning that shares a similar objective to our approach
[10]. The authors modify the model-based policy search
algorithm PILCO [18] such that it minimizes the KL to the
distribution of the demonstrator instead of maximizing the re-
ward. While our objective is similar, we obtain a closed form
solution for linear feedback controllers with our approach
while [10] obtain a highly non-linear policy by performing
a computationally heavy, non-convex optimization.

II. PRELIMINARIES

This paper focuses on finite-horizon Markov Decision
Processes (MDPs). A finite-horizon MDP is a 5-Tuple
(s,a,pt(s’|s,a),rt(s,a),T) where s denotes a vector of
states, a denotes a vector of actions and I denotes the time
horizon. The reward function at time step ¢ is denoted by
r+(s,a) and the system dynamics by p:(s’|s, a).

We define y, = f(s, a;) as the task space position at time
t and f as the task space transformation. We want to match
the observed task space distribution of the demonstrator with
the task space distribution that is induced by the policy.
The task space can for example be defined by the forward
kinematics of the end-effector. If we want to match the
observed states and actions, the task-space transformation
is defined by the identity function.

We define the feature vector v (y) as the linear and
quadratic expansion of the task space vector y. This expan-
sion is needed to match the first and second order moments of
the distribution p(y) over the task space. For time-dependent
vectors or functions, a subscript (usually ¢) is used to refer
to a given time step while dropping the subscript refers to
every time step.

Our method is based on the Kullback-Leibler divergence,
or relative entropy, between two distributions p;(y) and

q:(y), given by

D pu(w)lanw) = | pity)os ke

and the conditional, differential entropy of a policy 7(als),
given by

H(mi(als)) = —/pt(s)/ﬂt(a\s) log 7:(als) da ds,

where p;(s) denotes the distribution over states at time step
t.

A. Maximum Causal Entropy IRL

Maximum Causal Entropy IRL (MaxEnt-IRL) [4] aims
at finding a reward function such that the resulting policy
produces trajectories that are close to the expert’s demonstra-
tions. Following [19], closeness is measured by comparing
the expected feature counts when following the policy with
the empirical feature counts of the expert, given by

|D|
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where |D| denotes the number of demonstrated trajectories
and y, , denotes the task position achieved by demonstration
1 at time step ¢. In the basic formulation, the feature counts
are matched exactly, however, a small error based on the ¢,
or /5 norm is often allowed when regularization is needed.
Since the expert’s demonstrations are usually not fully
optimal and we have limited data to estimate the average
feature counts, an optimal policy for the given MDP is not
the right basis when comparing the feature counts. Indeed,
the soundness of such approaches depends on how good
the expert is modeled when computing a policy for a given
reward function. MaxEnt-IRL models the expert using the
policy that has maximum entropy among all policies that are
able to match the feature expectations and thereby does not
make any ungrounded assumptions on the expert’s policy.
The corresponding optimization problem can be written as

T-1

max
T (als)

H(m(als)) st Yoo+ [ 670 (w)dy = b,
t=1 Y

where additional constraints specify p7 (y) as the distribution
over task space positions at time step ¢ that results from
applying the given state transformation p;(y|s, a). Further-
more, we need to ensure that state distribution pf(s) is
consistent with the previous policy m;—1(al|s), system dy-
namics p;—1(s’|s, a) as well as the previous state distribution
pr_1(s), i.e.,

pi(s) = /pt—l(s)/7Tt—1(a|s)pf_1(s’\s,a)dads.

This optimization problem is solved by minimizing the
Lagrangian dual problem G, where we refer to [20] for
further details on the derivation of the dual problem. The
maximum entropy policy is then found to be

mi(als) = exp (Q“’f‘(s, a) — VSOf‘(s)) . (1)

where V*°f(s) is the Lagrangian Multiplier of the dynamics
constraint and relates to the Value function of 7. The opti-
mality condition for V°'(s) is found by setting the partial
derivative % to zero, yielding

Violt(s) = log/exp( “’“(s,a)) da, )

which corresponds to the softmax of the softened state-action
Value function

fl(s,a) = (s, a) +/ pe(s']s, @)Vl (s)ds’.  (3)

s’/

The learned reward function is linear in the features, i.e.
r(s2) =07 [ pulyls. a)u(w)dy. @
Yy

where the weights 6, are the Lagrangian Multipliers of the
feature matching constraint and learned by minimizing the
dual function [20]

§20T¢t

g Ep1 (S) soft

using gradient based optimization, where the gradient is
given by the difference between the empirical feature counts
of the expert wt and the expected feature counts zpt of the
policy m(a|s) given by (1), i.e.

o ~ R
g :¢t _¢t~ )

00,

MaxEnt-IRL can be applied for matching expert distribu-
tions by matching their moments. For example, a Gaussian
distribution over the task space y can be matched by match-
ing its first and second moments. Hence, MaxEnt-IRL can
be applied for matching the expert’s distribution by matching
a vector 1,Ab(yt) that includes the task space positions y; and
all second-degree monomials ¥;y;, with 1 <4 < j < N,
where IV,, denotes the number of task space variables.

However, treating first-degree monomials and second-
degree monomials as independent features impairs regular-
ization as well as optimization. For example, punishing high
weights on a given first-degree monomial using ¢; or /5
regularization does not take the variance of the respective
feature into account and may hence introduce large regu-
larization errors on the mean even for crucial low-variance
time steps. Similarly, the optimization does not take into
account that changing the expected feature count of a first-
degree monomial also affects the expected feature counts of
its corresponding second-degree monomials.

III. (I)OC BY MATCHING DISTRIBUTIONS

In order to address the issues of Max-Ent IRL when
matching first and second order moments, we propose a
novel application of the principle of maximum entropy for
Inverse Reinforcement Learning that aims at minimizing the
relative entropy to the distribution ¢;(y) estimated from the
expert rather than matching the expert’s feature counts. The
corresponding constrained optimization problem is given by

T-1

max H(m(als)) Z/BtDKL (pf Wla:(y)), (©)
m(als) i = t=2

where the same constraints are used for modeling the re-
lation between pf (s), w(als) and p] (y) as in MaxEnt-IRL.
Regularization is controlled based on the coefficients 5; > 0,
where high values emphasize the objective of matching the
expert’s distribution, and thus yield low regularization.

The optimization problem sketched by (6) is solved by
minimizing the Lagrangian dual problem

g :Epl(s) [Vsoft( )]
+ Zt:ﬁt log /y exp <log q(y) — ﬁltnt(y)>dy, (7

where the policies m(als) and the softened state and state-
action value functions V*°'(s) and Q*"'(s,a) are the same
as for MaxEnt-IRL, i.e., they are given by (1), (2) and (3).
The reward functions, however, are directly given by the



Lagrangian multipliers 7;(y,) corresponding to the transfor-
mation constraints of the task space variable, i.e.,

ri(s,a) = / P (yls, 2 (w)dy.

Setting the partial derivative 6;17@@ to zero yields an opti-
t

mality condition between p7 (y) and n:(y), given by

n:(y) = B (log g:(y) — log pf (y)) + const. (8)

Note that (8) defines the reward function recursively since
the task space distribution pf(y) depends on the policy
which in turn depends on the task space reward function
via (1), (2) and (3). Furthermore, (8) provides information
about the structure of the reward function. For example,
if ¢(y) and pJ(y) are normally distributed, the reward
function is quadratic in y.

Instead of using (8) for estimating the task space reward
function 7:(y) based on an estimate of pf (y), (8) can also
be reformulated for estimating the desired distribution over
task variables p;(y) based on the current estimate of 7;(y),

i.e.
1

Pi(y) o exp (mg a(y) - @my)), ©)

where a tilde is used to distinguish this estimate of the
distribution over task space variables from p7 (y), the dis-
tribution over task space variables that is produced by the
policy 7(a|s) which is computed according to (1).

The dual function (7) can be minimized using gradient-
based optimization. For example, when assuming the reward
function to be linear in a given feature vector v¥,(y), i.e.
ni(y) = 0/ ,(y), the partial derivative of the dual with
respect to the weight vector 8, is given by

o
679% =Epr(y) [V (Y)] — Ep,(y) [V (¥)] -

However, while we use the gradient (10) for discussing the
relative entropy based regularization as well as the relation
between our approach and MaxEnt-IRL in Section III-A, we
use a different procedure for optimizing the dual function (7)
that is based on the recursive definition of the reward
function (8) and discussed in Section III-B.

(10)

A. Relative Entropy Based Regularization

The gradient of the new formulation (10) only differs
from the gradient of MaxEnt-IRL (5) in that the empirical
feature average {pt has been replaced by the expectation
of ®¥,(y) under p;(y). As the empirical feature average
corresponds to the expectations of 1, (y) under the empirical
expert distribution ¢;(y), our gradient (10) corresponds to the
gradient of MaxEnt-IRL (5), but with the target distribution
replaced by p;(y). However, this new target distribution,
pt(y), is adapted during optimization as it depends on the
current estimate of the task space reward function.

More specifically, as it can be seen from (9), it is a
modification of the actual target distribution ¢;(y) where the
log-likelihood of task space variables is increased if they
are assigned high reward and decreased if they are assigned

low reward. Assigning high rewards to a task space variable
y, at time step ¢, indicates that its log-likelihood would
otherwise be too small, while assigning low rewards indicates
that the log-likelihood would otherwise be too high. Hence,
the modified target distribution is—according to the current
estimate of the task space reward function—easier to match.

Although p;(y) might not be feasible in the beginning of
the optimization, it will converge to the same distribution
as pr(y) as the algorithm converges to the optimal reward
function 7(y) and policy 7(a|s). Note that pI (y) is always
feasible as it is defined as the distribution over task space
variables that is produced by the current policy.

If the target distribution ¢;(y) is feasible, the difference
between the modified target distribution p;(y) and ¢:(y) is
caused solely by regularization and converges to zero as
[ approaches infinity. Similar to ¢; or {5 regularization in
MaxEnt-IRL, our regularization scheme aims at increasing
the controller entropy at the cost of not matching the expert
demonstrations exactly. However, instead of measuring the
distance to the expert demonstrations based on the absolute
or squared distances between the empirical and the expected
feature count, our approach employs the relative entropy
between the resulting distribution and the empirical expert’s
distribution over task space positions.

B. Alternative Descent Direction

In contrast to MaxEnt-IRL, the relative entropy formu-
lation does not only provide the gradient with respect to
the reward function but additionally enables us to estimate
the optimal reward function based on (8). It is therefore
appealing to exploit this additional information to achieve
faster optimization. Starting from an estimate 05721 of the
parameters of the reward function, the resulting distribution
over task space positions can be computed based on (1), (2)
and (3), which can then be used for computing a new esti-

mate 05;;1) based on (8). However, such greedy jumps based

on estimates pg(l) (y) of the optimal, regularized distribution
over task space positions do not guarantee convergence due
to the recursive relation of the reward function and the task
space distribution pf (y). Instead, we propose to interpolate

the current estimate of the weights 97(771 with the estimate of

the optimal weights 0,(711 according to (8), i.e.

n, n,t‘
=05, —a (01} - 8,.) = 65, — ad, .

with stepsize a.

The update direction 697]7t is an ascent direction of the
dual function (7) and the proposed update scheme, thus,
converges for reasonable step sizes. A proof is given in
the supplementary material, that also covers the special case
of MaxEnt-IRL, where p;(y) = ¢:(y). Hence, our update
direction can be also applied for other methods that are based
on MaxEnt-IRL, assuming that the parameters of the expert
distribution 6,4, can be estimated.
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Fig. 1: (a) Comparison of both update directions on a toy
task with only one task variable and two features (linear
and quadratic term). While gradient descent needs many
updates as it neglects the dependencies of the linear and the
quadratic parameters, our new update direction achieves fast
convergence within few updates. (b) Zoomed updates of the
gradient descent.

C. LOR Solutions

Computing the policy for a given reward function, as well
as the resulting distribution over task space positions is in
general hard and a major challenge when applying IRL to
real-world applications. Linear-quadratic regulators (LQRs)
are an important exception that allow to compute both, the
policies as well as the resulting state distributions by means
of dynamic programming. An LQR is a control problem with
linear Gaussian state dynamics

pe(s'|s,a) = N (s'|Ays + Bia+ ¢, 3y)

and concave quadratic state-action reward functions

re(s,a) = (:)TRt (z) + (;)Trt +re

The resulting softened state-action value functions

soft _ S i S S !
i (s,a) a Q:t a + a qr + Gt

as well as the softened state value functions
VElt(s) =s Vs +s' v + oy

are then also concave quadratic functions. Furthermore, the
policies given by (1) are given by stochastic linear controllers

7Tt(a|S) :N(a|Kts+kt,2mt) . (11)

The parameters can be computed using dynamic program-
ming starting with Vr(s) = rr(s,0). The resulting softened
Value function differs from the actual Value function of
the controller given in (1), which would be computed as
Vi(s) = [, m(als)Q:(s,a), only in the offset v; which is
increased by the amount of entropy of the controller, i.e.

Vi (s) = Vils) + 3 H)

Given a Gaussian initial state distribution p;(s) and linear
transformation of the task space

pi(yls,a) =N (y|Ft s a]T + fhEF,t),

the controller given by (11) produces Gaussian state and task
space distributions. We will use linearizations for obtaining
the task space, e.g., if the task space corresponds to the end-
effector position, F' is given by the Jacobian matrix. Further
assuming Gaussian expert distributions, the reward functions
computed according to (8) are quadratic in task space posi-
tions and the related rewards 7 (s, a) = fy pe(yls, a)n(y)dy
are again quadratic in states and actions.

1) Comparison of Descent Directions: The difference
between the gradient and the ascent direction 50,,,t can be
better understood by comparing them in the LQR setting.
The partial derivatives with respect to the weights of the
linear and quadratic terms are then given by

g
8ry,t

06 T T
aRy,t = Hypr Hpr o + Bipr b — Kg Mg — DN

= Hp~t — Hp,

whereas the proposed ascent directions update along
1)

vy = Do by — 5 M,
1oy 1o, (12)
6Ry,t == _§Ep",t + *E~t.

The gradient does not take into account the correlations
between the weights of the linear terms and the weights
of the quadratic terms for a given time step ¢. Hence,
the gradient would not change the linear term of the re-
ward function, if both distributions matched in mean but
differed in their covariances. The drawbacks of neglecting
these interdependencies are depicted in Fig. 1. For a better
illustration, a simple IRL problem was chosen with only two
time steps, a single task variable and true knowledge of the
expert distribution. Fig. 1a shows three iterations of Inverse
Reinforcement Learning when following the proposed search
direction and thousand iterations when following the gradi-
ent. In both cases, the optimal stepsize was found using a
line search. Following the gradient quickly leads to a good
goal position (relating to the ratio of quadratic and linear
coefficient), however, it converges very slowly to the correct
quadratic coefficient. The resulting distributions are quickly
matching the expert distribution in mean but fail in matching
the variance accurately. Fig. 1b shows a zoomed in view
on the gradient updates. By changing the linear coefficients
too slowly when the means are closely matched, even small
changes to the quadratic terms lead to wrong goal positions
and thus increase the value of the dual function. In contrast,
the true reward function could be recovered by following the
proposed ascent direction after only three iterations.

2) Regularized Gaussian Distributions: The effect of reg-
ularization can also be better understood by an examination
in the LQR setting. The resulting covariance matrices and
mean vectors of our approach are then given by

Spe = (Bg1 +26, Rya)
My =51 (Etﬁﬂq,t - Bflry,t) .

Hence, the precision matrices of the expert distribution are
interpolated with the reward matrices R, . When computing
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Fig. 2: (left) Expected reward for different number of ac-
tions and T'=100. (right) Expected reward for different time
horizons and eight actions. When using the proposed search
direction, the algorithm converges significantly faster.

t;:(y), the mean of the expert distribution is rescaled
based on the precision matrix before interpolation with the
linear reward coefficient, thereby putting more weight on the
expert’s mean for low-variance time steps.

D. Linearized Dynamics

For many real-world applications, the system dynamics
are non-linear and the LQR derivations can not be ap-
plied straightforwardly. In order to make the computation
still feasible, linearizations of the dynamics are commonly
applied. In the paper [7], the authors estimate a locally
optimal controller for a given reward function by iteratively
using linear approximations of the dynamics and quadratic
approximations of the reward function based on the state-
action trajectory of the last iteration. However, since these
approximations are only valid in the proximity of the last
trajectory distribution, optimization might become unstable
if the trajectory distributions change too much. We follow
[8] by adding a constraint to our optimization problem that
bounds the relative entropy between the learned controller
and the last controller, 7,y (a|s), that was used to obtain the
linearization, i.e.

Vit D (m(als)l|m (als)) < e,

where ¢; is the desired bound. This constraint induces
additional reward based on the likelihood of the action under
the last controller, namely

last

r(sia) = [ lyls.aym(u)dy + s log it als),
Yy

where «; are the corresponding Lagrangian multipliers.

Furthermore, the dual function is augmented by >, oqe;.

The weights o, can be learned based on the partial derivative
0g

5 = Do (m(als)||m (als)) — e

8at

IV. EXPERIMENTS

We start our evaluation by comparing our method with
MaxEnt-IRL in terms of convergence speed and quality of
regularization on a simple linear system. In the second part
of our experiments we compare our method with related
work [9] where we want to learn a reward function for
robotic handwriting and with [10] where we want to learn

a pendulum swing-up by matching a distribution over joint
positions. In our main experiment, we demonstrate the ap-
plicability of our Differential Dynamic Programming based
(DOC method on a simulated quad-link. For IOC, we learn
a time-dependent reward function of a near-optimal swing
up and for optimal control we learn to produce a dynamic
peg-in-hole movement based on a specified target distribution
over end-effector positions and orientations.

A. Linear System

We chose a stochastic linear system with one action and
two states per dimension, such that the actions corresponds
to accelerations and the states to corresponding velocities
and positions. The single dimensions are not coupled. The
underlying reward function is a quadratic, time-dependent
function that assigns high rewards to four via points at time
steps T/4, T/3, T/2 and T and very low rewards for the
remaining time steps. Additionally, we use time-independent,
uncorrelated quadratic action costs. The expert policy of this
LQR is computed based on optimal control and the resulting
distributions over positions are to be matched.

1) Speed of Convergence: The convergence speed is com-
pared for different number of dimensions as well as for dif-
ferent time horizons 7. When evaluating the gradient based
MaxEnt-IRL, we use LBFGS [21] for optimization. For the
proposed search direction such gradient based optimizers
are not applicable. Therefore, we chose a simple stepsize
adaption scheme that increases the stepsize by 1.2 if the
dual function decreased after the last step and decreases the
stepsize by 0.5 if the dual function increased. Furthermore,
steps that led to an increase of the dual function are undone.
Fig. 2 shows the expected reward of the learned policy under
the true reward function for different horizons and action
dimensions. Albeit the simplicity of the system, MaxEnt-
IRL often failed to match the target distribution sufficiently
well even after several hours of optimization.

2) Regularization: Due to the difficulty of matching
higher order moments based on the gradient, we were
restricted when choosing a system for comparing the KL
based regularization with regularization based on L; or Lo.
Therefore, we had to opt for a one-dimensional system with
T'=50. The distribution over positions was estimated based
on three sample trajectories of the optimal controller. Fig. 3
shows the estimated mean of the expected reward with 20-
confidence for five different coefficients per regularization
type. Mean and standard error have been computed based
on 96 trials. The results of our experiment indicate that, for
reasonably chosen coefficients, regularization based on the
relative entropy performs significantly better than regular-
ization based on the ¢; or ¢5 norm.

B. Robotic Handwriting

The problem of inferring a reward function for matching
a target distribution was also tackled by [9] based on a
variant [13] of MaxEnt-IRL that does not take causality
into account. When learning the reward function for robotic
handwriting, they neglect the effect of the dynamics on
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Fig. 3: Mean of the expected reward when presented with
three demonstrations. Five different coefficients have been
tested for each type of regularization. KL-based regulariza-
tion can achieve more expected reward than regularization
based on the ¢; or /5 norm.
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Fig. 4: Only when taking the system dynamics into account
while learning the reward function, the resulting distribution
(blue) matches the target distribution (black) accurately.

the resulting distribution over pen tip trajectories. However,
when solving the optimal control problem for such reward
functions the resulting trajectory distribution of the optimal
controller would no longer match the expert distribution.
Instead, we apply our method to match a distribution over
pen tip trajectories [22], [23] while taking into account the
system dynamics. We demonstrate the difference between
these approaches based on the linear model discussed in the
last section, yielding two actions for accelerations in x and y
direction and four states for the corresponding positions and
velocities. The demonstrated trajectories have been aligned
by curve-fitting and sub-sampling to a fixed horizon T'=840.
The resulting distributions over task space positions after
optimizing the different reward functions are shown in Fig 4.
By taking the system dynamics into account, we are still able
to produce the target distribution. In this case, neglecting the
system dynamics led to a reward function that assigns to
much reward for staying close to the mean trajectory and
produces a stiff controller.

C. Pendulum Swing-Up

We compared our work to [10] on a simulated pendulum
with a length of 0.6 meter that weighs 500 gram. A target
distribution over joint positions for a swing-up movement
was estimated from samples of their controller and presented
to both algorithms. The movement took 2.5 seconds and was
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Fig. 5: Forward KL and reverse KL of our approach (blue)
compared with [10] (red). The relative entropies have been
estimated based on 1000 samples on the actual system. While
our approach is less sample efficient, it converges to a better
solution.

discretized into 25 time steps, yielding intervals of 100 ms.

For our approach, we iteratively used linear approxima-
tions of the dynamics as discussed in Section III-D. We
learned the linear approximations using ridge regression
based on five sample trajectory. However, we only generated
three samples for each iteration and reused two samples of
the previous rollout. We did not address sample efficiency
in this work, but want to point out that [8] reuses samples
from previous iterations and different time steps by learning
a Gaussian mixture model as prior. Such modifications could
be straightforwardly applied to our method as well.

The approach presented in [10] is very sample efficient by
learning a Gaussian Process for approximating the system
dynamics and, thus, uses only one sample per rollout.

Fig. 5 shows the relative entropy for both approaches plot-
ted over the total number of samples. Since [10] minimize
the forward KL, Dxy(q:(y)||pf (y)), whereas our approach
minimizes the reverse KL, Dxi.(p7(y)||l¢:(y)), we show
the results of both objectives. Although [10] provides good
results already after few executions on the actual system, our
approach converges to a better solution.

D. Frictionless Quad-Link

While we were restricted to low-dimensional systems
and small number of time steps for our comparisons to
related work, we also tested the applicability of our approach
on a more challenging simulation of a frictionless, planar
kinematic chain of four links. Each link has a length of
1 meter and weighs 1 kilogram. The simulation takes into
account gravity as well as Coriolis and Centrifugal forces.
Time is discretized into intervals of 10 milliseconds.

1) Peg in Hole: For the optimal control task, the target
distribution is specified directly in order to define via points
in task space. We use three task space variables for specifying
the end-effector position in x and y position as well the end-
effector angle relative to the y axis. We use independent coef-
ficients 3y, to define the importance of meeting the objective
for task space f at time step t. Setting the corresponding
coefficient to zero disables the objective completely. We test
our approach for inserting the last link horizontally into a
small hole in a wall. We choose T'=200 and only specify
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function as well as the corresponding controller was learned
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25

175 180 185 190 195 200

0.9
150 155 160 165 170 175 180 185 190 195 200

1.6
155

15
150 160 170 180 190 200
time

Fig. 7: The achieved distribution (red) was estimated based
on 1000 samples and compared to the target distribution
(blue) in the vicinity of specified time steps. Our approach
accurately matches mean and variance for all three task
variables.

target distributions for the last 50 time steps. For those time
steps, the desired mean end-effector positions along the y
axis are set to 1 and the desired mean end-effector angles
are set to 7 inducing the desired horizontal alignment of the
last link. The inserting motion is induced by setting the target
mean x-coordinate of the end-effector. This target distribution
is only set for time steps 175 and 200 with desired mean
positions of 2 and 2.5. For all target distributions, we set
the variances to le—4. The resulting movement is shown in
Fig. 6 (left). Fig. 7 compares the achieved distributions and
the target distributions in the vicinity of the specified time
steps. Our approach achieves the desired distributions over
task variables with high accuracy.

2) Swing Up: We performed our nonlinear inverse op-
timal control method for inferring the reward function for
a swing-up movement based on locally optimal demon-
strations. The demonstrations were produced by a linear
controller that was learned using MOTO [24]. Furthermore,
only the joint positions were presented to our algorithm.
Optimizing the learned reward function produced the desired
behavior as shown in Fig. 6 (right).

V. CONCLUSION

We presented a method that unifies optimal control and
inverse optimal control in one framework by learning the
controller and the corresponding reward function for match-
ing a given distribution over trajectories. For optimal con-
trol, directly specifying the desired accuracy for given goal
positions is arguably less cumbersome than specifying a

reward function. For inverse optimal control, our approach
is several orders of magnitudes more efficient in matching
target distribution than MaxEnt-IRL and allows for better
regularization based on the relative entropy. Furthermore,
based on incremental linearizations of the dynamics, we can
perform non-linear inverse optimal control even when the
states and actions are not observed directly.
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Supplementary

1. FULL SPECIFICATION OF THE OPTIMIZATION PROBLEM AND ITS DERIVATIONS
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The partial derivative of the Lagrangian w.r.t. the policy is given by
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Setting the partial derivative to zero yields
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By setting the partial derivative 3 )\ =1- f m¢(als)da to zero, we find that inserting the optimal Lagrangian multiplier A} ; normalizes
the policy m:(a|s) and hence
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Inserting (4) into the Lagrangian yields the dual
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Gradients of Dual:
We first define
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The partial derivatives of the dual are then given by:
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Setting the derivative w.r.t. the state distribution to zero yields Bellman’s Equation (backward pass).

oG —p1(8) + pa(s) Jift=1
Vi(s) — | —pe(8) + [, o me—1(als)pi—1(s)pe—1(s’|s, @), if t>1

Setting the partial derivative w.r.t. the value function to zero yields the dynamics equation (forward pass).
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Alternatively, we can solve for the task space reward function, yielding
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Setting (5) and (6) back into the dual yields
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II. PROOF THAT THE ALTERNATE UPDATE DIRECTION IS A DESCENT DIRECTION

We will now prove, that interpolating the current estimate of the task-space reward function with the estimate
computed by (7) corresponds to an update along a descent direction of G. To do so, we assume that the target
distribution over task-variables, ¢;(y), and the induced distribution over task-variables, p;(y), are Gibbs distributions
with potential function that are-without loss of generality-linear in arbitrary features 1)(y). The reward function
estimate according to Equation (7) and the regularized target distribution according to Equation (6) are then given
by

B ~ ()T
(y) = Bi (0g, — 0p<i)7t)—r ¥ (y) + const = 0;1 1 (y) + const,

Piy) o exp ((eq,t - ;to;ibwt(y)).

Interpolating the current estimate of the reward function weights
« corresponds to the weight update
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Lemma 1 Let p;(y) and p:(y) be Gibbs distributions, i.e. p:(y) = Zﬁ_tl exp (0;¢(y)) and p(y) = Z,," exp (0;'¢(y)).
Further, let (SQ,M = 6, 150mt' The scaled update direction élgmt then corresponds to the difference between the
weights of the potential functions of p:(y) and p(y),
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Theorem 1 Let pi(y) and p:(y) be defined as in Lemma 1. The update direction 6l9mt is then an ascent direction

of G.
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where strict inequality holds if p:(y) # p:(y). m

By replacing p; by the empirical expert distribution ¢;, convergence can also be shown for the special case of
MaxEnt-IRL.



